The Art of Mixing, Anaerobic Digesters

Dr Hara Papachristou
Process Engineer
hpapachristou@bhrgroup.co.uk

25th October 2011
Aims

- Highlight the importance of getting digester mixing right

- Provide an overview of the current state of the art in digester mixing
Contents

➢ Importance of digester mixing
➢ Mixing objectives and design criteria
➢ Measuring and modelling mixing performance
➢ Digester mixing state of the art
➢ Digester and Sludge Mixing Software
Background

- Increasing number of digesters, mixing and holding tanks are in use
- Wide range of mixer types/sizes
- Few mixing criteria established or applied
- Reliance on mixer suppliers, no independent design information
- No link between rheology and mixer sizing
- Variable “success” of installed mixers
Industry Needs

Why is mixing so increasingly important?

- Thicker feed sludges to improve throughput, leading to thicker digestate
- Smooth out variability in feed physical properties
- Maximise gas production
- Maintain uniform digester temperature
- Avoid built-up deposits on digester floor
- Dilute inhibitory substances entering digester
- Avoid short circuiting to maximise pathogen kill
Mixing Objectives

What should the mixer achieve?

- Blending feed sludge into the bulk
- Generate the desired flow pattern
- Minimise dead or stagnant zones
- Avoid solids accumulation
- Scum drawdown
- Enable tank emptying
Defining Mixing Criteria

- Feed Slurry Blending
 - Blend Time: time taken to achieve a predetermined degree of concentration homogeneity
 - 90% blend time: the time taken for concentration fluctuation to be within +/- 10% of the mean concentration
 - Typically, 90% or 95% blend times of 1 to 2 hours are specified for digesters

- Active volume
 - The ‘non stagnant’ volume
 - Typically, 90% or 95% specified

- Extend of short circuiting
Modelling Performance

- Published Design Information
 - Digester mixer design
 - Chemical process mixer design

- Physical Modelling
 - Clear simulants for slurry & feed
 - Velocity and blend time measurements
 - Wash out curves

- Computational Fluid Dynamics
 - Flow patterns, velocities and blending
Digester Mixer Design Consideration

- Digester shape (base & aspect ratio)
- Feed & digestate rheology
- Location of inlets & outlets
- Digester feed rate & cycle
- Digester flow pattern & residence time
- Mixer type and size
State of the Art

➤ Feed location
State of the Art

- Impellers
State of the Art

- Jets
State of the Art

- Unconfined Gas
 - Continuous or sequential gas addition through the nozzles
 - No difference for low viscosity digestate
 - Sequential superior for high viscosity digestate
WWM Scope for Digester Mixing

- CR8239 Sludge Tank & Digester Mixing Research Report
- CR8237 Digester & Sludge Tank Mixing Design Guide
 - Mixer design, rating, and selection guide
 - Linked to performance criteria
 - Sludge rheology dependent
 - Based on physical modelling and CFD
Digester & Sludge Tank Mixing Software

Aims:

► Enable easier and practical application of the paper design guidelines
► Allow range of mixing scenarios based on combinations of different tank geometries, sludge properties, mixer type
► Allow rating of digester mixing performance
Digester & Sludge Tank Mixer Software

- Excel based software
 - Non newtonian fluids (Power Law and Herschel Bulkley)
 - Transitional and turbulent regimes
 - Jet and submersible mixers
 - Impeller mixers (focus on axial impellers)
 - Unconfined gas mixers
- Two primary criteria
 - Blend time
 - Active or cavern volume calculations
Digester & Sludge Tank Mixer Software
Digester & Sludge Tank Mixer Software

Tank Geometry

Jet Mixer

Gas Mixer

Mixing Requirements

Design Recommendations

Warnings

Number of warnings:

© BHR Group 2011
Digester & Sludge Tank Mixer Software

<table>
<thead>
<tr>
<th>AO</th>
<th>AP</th>
<th>AQ</th>
<th>AR</th>
<th>AS</th>
<th>AT</th>
<th>AU</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Jet Mixer</td>
<td>Impeller Mixer</td>
<td>Re>10000</td>
<td>Rotational Velocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Jet A</td>
<td>1 Lightnin A310</td>
<td>0.3</td>
<td>1 rps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Jet B</td>
<td>2 Chemineer HE3</td>
<td>0.3</td>
<td>1 rpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Jet C</td>
<td>3 45 deg PBT (4 blades)</td>
<td>1.27</td>
<td>2 deg/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Jet D</td>
<td>4 45 deg PBT (6 blades)</td>
<td>1.64</td>
<td>2 rad/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>User defined</td>
<td>0.4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you

Hara Papachristou
email: hpapachristouh@bhrgroup.co.uk

Enquiries: contactus@bhrgroup.co.uk